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Molecular dynamics simulations of crystallization of hard spheres
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We have carried out molecular dynamics simulations of the crystallization of hard spheres modeling colloi-
dal systems that are studied in conventional and space-based experiments. We use microscopic probes to
investigate the effects of gravitational forces, polydispersity, and of bounding walls on the phase structure. The
simulations employed an extensive exclusive particle grid method and the type and degree of crystalline order
was studied in two independent ways: by the structure factor, as in experiments, and through local rotational
invariants. We present quantitative comparisons of the nucleation rates of monodisperse and polydisperse
hard-sphere systems and benchmark them against experimental results. We show how the presence of bounding
walls leads to wall-induced nucleation and rapid crystallization, and discuss the role of gravity on the dynamics
of crystallization.
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I. INTRODUCTION These simulations allow for microscopic probes of the phys-
ics involved in both conventional and space-based measure-

Hard-sphere systems are idealized approximations to enents of nucleation and crystal growth in colloidal systems.
large number of physical systems, such as simple ligiiigls We focus on the effects of weak gravitational forces, poly-
glasse$2], colloidal dispersion§3], and particulate compos- dispersity, and on the effects of bounding walls on phase
ites [4] and are now being studied extensively in a micro-Structure. We present quantitative comparisons of the nucle-
gravity environment{5-7] that allows for the creation of ation rates of monodisperse and polydisperse hard-sphere
new technological materials, such as photonic crygig]s  Systems and benchmark them against experimental results.
The use of colloidal particles for engineering new materials/Ve demonstrate that the presence of gravity can delay crys-
is a relatively unexplored field that promises to revolutionizetallization. Furthermore, we show how the presence of the
materials synthesis. Colloidal suspensions are also interedtounding walls leads to wall-induced nucleation and rapid
ing from a fundamental scientific point of view since they crystallization. )
self-assemble into a wide range of structures. Thus, they may Numerical studies of the hard-sphere system started with
be thought of as models of atomistic condensed matter sys-
tems with the distinct advantage of relevant length and time
scales being more readily accessible to experiments.

On the Earth, the effects of sedimentation and gravity-
induced convection can cloud, modify, or sometimes even
radically alter the intrinsic behavior of certain classes of col-
loidal systems. Because the binding energies of the crystal
line phases are low and comparable to each other, gravity ca
greatly influence the kinetics of formation and, indeed, the Stable branch(solid)
very nature of the observed crystal structure. Colloidal sus+=
pensions of hard spheres are model systems for studying thZ
statistical mechanics of structural phase transitions. Suct Metastable branch
suspensions undergo an entropy-driven phase transition fror T~
fluid to crystal as a function of increasing volume fraction.
Unlike comparable phase transitions in conventional system: Freezing
of condensed matter, the dynamics of such structural phas R
transitions can be monitored with “atomic” precision using '\\
conventional light microscopy. In hard-sphere systems, al Meltihg
high volume fractions, glass formation competes with the
nucleation and growth of the crystalline phase. The Chaikin-
Russel experiments on a space shytiigé| have led to the
striking result that samples of hard sphere colloids that re- o250 o0 Ei508: o077
main glassy on the Earth for more than a year crystallize ¢
within a few weeks in a microgravity environment.

In this paper, we present results of molecular dynamics FIG. 1. Schematic representation of the phase diagram of a sys-
(MD) simulations of the crystallization of hard spheres.tem of hard spheres.
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the pioneering work of Alder and Wainwrigf]. Since then, dynamics of crystallization and show that the nucleation
there have been many studies that elucidated the nature tdtes for crystallization are comparable to the values obtained
the phase diagram. In particular, computer simulatimes ~ experimentally.
Refs.[10-13 for a few exampleshave provided evidence ~ We show that the system with periodic boundary condi-
for the existence of a first-order fluid-to-solid transition in tions crystallizes in a somewhat complex manner with an
the hard sphere system. With an increase of the packing fraditerconnected phase of growing crystal nuclei. In contrast, a
tion ¢, (defined as the ratio of the volume occupied by theSystem with planar walls exhibits layering and leads to a
spheres to the total voluméhe system in the liquid state heterogeneous wall nucleation mechanism characterized by
reaches the freezing point at=49.4% (see Fig. 1 for a More rapid crystallization. For volume fraction around 56%,
sketch. The phase diagram splits into metastable and stablgravity leads to a concentration gradient accompanied by the
branches at this point. The metastable branch is a continu#ormation of very well-defined layers with excellent planar
tion of the liquid branch and it exists in the region betweenordering. However, at larger volume fractions, gravity causes
the freezing point andp~64% which corresponds to the the crystallization process to slow down relative to the planar
random close packingrcp) state. The rcp provides the maxi- Wall case without any imposed gravitational field. Polydis-
mum ¢ that can be achieved in the disordered system. Th@€rsity in the s_|ze_d|str|but|qn of the hard spheres I_eads to
stable branch consists of a coexistence region of the liquiglower crystallization, and in the absence of gravity, we
and crystal which ends at of 54.5% corresponding to the found an increase with time of the relative fractlo.n of hard
melting point. Above the melting point, the stable branchSPheres with fcc order, compared to hcp, suggesting that the
represents the crystal state and that is present ug to former crysf[al structure is pre_ferred to the latter.
~74% which corresponds either to the close packed face- 'Nne outline of the paper is as follows. In Sec. Il, we
centered cubi¢fcc) or to the hexagonal closed packéttp describe the algorithms used in the s!mulauons. In Sec. lll,
configurations. we present the methods. of the anal_yS|s of the local structure
The metastable branch, especially its part above the mel@nd of the thermodynamical properties of the system. Sectllon
ing point, has received a lot of attention in the last severalV Presents the results of our simulations for both monodis-
years. One of the debated issues here is the existence of tRE'S€ and polydisperse systems with periodic boundary con-
glassy state in the metastable system when58%, i.e. in ditions. Section V pon3|d(_ers Fhe effec_ts arising due to rigid
the vicinity of the rcp value. A number of papers report noflat walls that re_'strlct mOtI.OI’]-In one direction ar_1d Q|scu_sses
sign of crystallizatiof13—15 and thus confirm the presence the role_of a uniform graynanonal field along this dlrect|o_n.
of the glassy state. On the other hand, Rintoul and Torquatg'”a"y' in Sec. VI, we discuss the nature of the crystalline
[10] have argued that if computer simulations were to run foPhase.
a sufficiently long time, then crystallization would eventually
set in. A striking experimental evidence for this scenario has
been provided by a recent microgravity experiment on a
space shuttlé5]. It demonstrated crystallization in a hard-  There are many possible algorithms that can be used in
sphere colloidal dispersion at=61.9% occurring on the the MD simulations of hard-sphere systefi9]. Owing to
time scale of several days whereas the same system stay#w simplicity of the potential, the only events that need to be
amorphous for more than a year when studied on the Eartltalculated are the consecutive collisions between the par-
The formation of the crystals in a supersaturated hardticles. In this respect, the MD algorithms for the hard-sphere
sphere system is commonly described by the classical nuclsystems are quite distinct from the algorithms for the soft
ation theory(see Ref[16], and references thergirAccord-  types of potentials where the evolution between the colli-
ing to this theory, a crystallite forms in the system due tosions also matters. Thus the evolution should not be consid-
thermal fluctuations and then its total free energy consists ofred in equal time steps but, instead, it ought to be studied
two terms: a negative bulk term, which is proportional to thethrough an event driven algorithm. The most challenging
volume of the crystallite, and a positive surface term that igart of such an algorithm, in terms of its computational per-
proportional to its surface area. This leads to the predictiofiormance, is the proper scheduling of the future collisions
that the crystallite will continue to grow only when its size is and the organization of the data structure.
bigger than a certain critical value and it will shrink other-  Our MD simulations were performed by implementing
wise. There are a number of experimental results that suppottie algorithms proposed by Isolp20] who introduced the
the classical nucleation theof$6,17. concept of an extended exclusive particle grid method to the
The MD simulations of the hard-spheres systems that wstudies of hard-sphere and hard disk systems. In this method,
report on in this paper are focused on the dynamics of crysthe volumeV containing the particles is divided into small
tallization above the melting concentration and are compleeells, so that each cell contains no more than one particle.
mentary to the earth-based studies of Gasseil.[18]. The  Thus, the continuous coordinates of the particles are
crystallization process is monitored by means of local ordefmapped” onto a lattice which allows for an easy specifica-
parameters as well as through the static structure factor. THeoon of neighboring particles. Candidates for the next
former method is currently widely used to analyze the resultparticle-pair collision are found just by searching the neigh-
of computer simulations whereas the structure factor is medoring cells. Once this is accomplished, the next collision
sured experimentally. We investigate the influence of boundevent for the system can be found by creating a complete
ing walls, polydispersity, and of gravitational field on the binary treg[21]. The positions of all the particles do not need

Il. THE MD SIMULATION
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to be updated after each collision, since in a sufficientlycaption in Fig. 12 for precise values units in which the
dense system the neighborhood of a particle remains theard-sphere diameter is 1 and the mean absolute velocity

same for a long time. is 1.
The initial packing of the system dfl hard spheres was
generated from a random set of points within a box by using 11l. CHARACTERIZATION OF THE HARD-SPHERE
an iterative algorithm proposed by Jullienal.[22]. At each SYSTEMS
stage of this algorithm one identifies the pair of particles .
with the smallest mutual distanck, (the superscripi refers A. The equation of state

to theith stage of the iterative procedyrand moves them  The relevant parameter that describes the thermodynamic
apart symmetrically by a distana#}, that decreases with properties of the hard-sphere system is the presBusince
each iterative step according to the following formula: the internal energy of such a system is that of an ideal gas.
Changing the temperatufieis simply equivalent to rescaling
_ R . the time scale. The pressure can be calculated by using the
dy t=dy— NS v (1)  radial distribution function or through the collision rate in the
system. The latter method is more reliable because of the
_ . difficulties with a precise determination of the radial distri-
Here ¢y, m=mdy N/(6V), ¢y=1, andR is a parameter pution function.
of the algorithm. The process continues umtj}<d,, and The equation of state in terms of the collision ratds
the final value ofd,, is chosen to be the particle diameter. given by[23]

Different values ofR lead to different packing fractions and,
generally, the smaller thR, the larger the packing fraction.
In the limit of R—0, one reaches a packing fraction corre-

spondlng o the rand_om. clo.se packed val_[ue. In Of‘?'?f to (.)b\ivherev is the total volumeN is the number of particlegg
tain a polydisperse distribution of the radii we modified thlsiS the Boltzmann's constant, ar is the second virial co-

algquthm SO that at each iteration ste'p we move ap{:lrt tw%fficient.l“o is the low-density collision rate, which is given
particles that overlap the most and their new mutual dlstancsy [24]
is set equal to the sum of the predefined particles’ radii.

Our MD simulations were performed with at least 10 976 N(N—1) (0?)
hard spheregboth in the monodisperse and polydisperse I',=8 R?

: : : 0 v 3
cases The particles were placed in a cubic box. In the ab-
sence of any walls, periodic boundary conditions were im- o . .
posed. When studying the effects of the walls, two flat waIIsWhere(v ) is the mean square velocity aRts the radius of
were introduced at=0 andz=L while maintaining the pe- theTiphere. itored th hout the simulati
riodic boundary conditions in the other two directions. Thisand Vfasrue;:gr;v;asu;nn%?;g\r; ar;?rl:gte?uthat eaIIS(’)Ivr\T/]:daul(s)rlo
was accomplished by changing the standard algorita#h check on the pro regs of the cr Ztallization
so that the walls are represented by two new “particles” that prog y '
do not move. The initial particle velocities were chosen to be

random with a Gaussian distribution and zero total momen- B. The local structure

tum. o ) A number of methods have been used in the literature to

The results were averaged over six simulations for eacRnaracterize the local structure and a degree to which it is
set of control parameters. We have focused on the conceRyystalline. A widely used technique to distinguish between
tration range fromp=54% 10 ¢="58% for systems without = crystalline and amorphous structures is through the Voronoi
the bounding walls and gravity and frosd=54% to ¢  gnalysis of the topology of the neighborhood of a given par-
=63% in the other cases. This procedure was motivated bycle. The Voronoi polyhedron is defind@] as the set of all
the fact that for lower and h|gher concentrations the Crystalpoints that are C|Oser to a given partic'e than to any Other_
lization times increase substantially and so does the compysartitioning of space into the Voronoi polyhedra allows one
tational time. to make a natural identification of the neighbors. Determina-

In our simulations we define the hard-sphere diameter tgion of the numbers of walls in the Voronoi polyhedra leads
be 1 unit and the time scale is defined by choosing the thgy an unambiguous selection of the particles in the solidlike
mean absolute VE|OCity of the hard Spheres to be 1. FO"OWregions_ However, such an ana|ysis lacks precision when ap-
ing the approach of Harland and van Meggid], in order to  plied to thermally distorted crystals and is not too effective in
make contact with experiment, we show the results of ougistinguishing between various types of crystalline order.
simulations by expressing times and lengths in units of therhe same difficulties arise when the structure, crystalline or
diffusional characteristic timer,=R? D, and hard-sphere not, is analyzed through the particle distribution function.
diameter R, respectively. Here, D0=377/16\/§amfp,

wherev is the mean absolute velocity of the hard spheres
and the mean free path,,= V/N47R?. The acceleration In order to determine the kind of the local order around a
due to the gravity was chosen to be approximately(4eé  particle and to distinguish between the fcc, hcp, bec, and

PV . I B, X
NkgT =~ T V' @

)

The local invariants
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liquidlike configurations, we make use of the local order pa- TABLE I. The values ofq,(i), qe(i), andwg(i) for different
rameter methodi25,26], which gives reliable results even in perfect crystal structurd®7].

the case of crystalline structures which are highly perturbed
The first step here is to construct the normalized order pa- 4 Js A

rameterﬁhm for a particlei through

fcc 0.191 0.575 -0.013

Ny (i) hcp 0.097 0.485 -0.012

Am(i)= —— >, Ylm(ﬂj)' (4) bcc 0.036 0.511 0.013
Np(i) =1 sc 0.764 0.354 0.013
Icosahedral 0 0.663 -0.170

whereNy(i) is the number of neighbors of the partich,,
is a spherical harmonic anaj=Fj—Fi with Fi being the
coordinates of the center of particle The neighbors are I [ I

defined to be those particles that have a mutual distance less ( )

than a certain cutoff value. It is physically appealing to

choose the cutoff as corresponding to the position of the first

minimum in the radial distribution functionY,, is the is a Wigner 3 symbol[28]. After calculatingg,(i), qe(i),
spherical harmonic function which means thgf,(i) has ~ andwg(i), one can decompose a vectoconsisting of these
21+1 complex componentsy,(i) can be normalized by three components into the five characteristic vectgs,

multiplication of a suitable constant to yietgh,(i), such that  Shcp, Sbces Sse, @ndsie, corresponding to perfect fcc, hep,
bcc, sc, and icosahedral structures. The values for the perfect

mp; my; ms

m=l crystals are given in Table I. Such a decomposition can be
> | Qim(D) A (i)=1. (5)  carried out by minimizing the following expressi¢ag]:
m=’
If A2:[g_(ffccgfcc'ipfhcpghcp"'fbccgbcc"'f's<,§sc"+_ficogico)]z
9

m=|

> Qm(Daf()

m=—1|

with a constraint that all thé factors are positive and they
add up to 1. As a result we get a set of five number&ach
f represents the “importance” of the corresponding structure.

then the bond between particlesindj is considered to be For example, for each particle of the perfect fcc crystal we
crystal-like. Furthermore, if a particle has seven or morevould getf¢.=1 and all the others to be zero. For an im-
crystal-like bonds, then it is counted as belonging to a crysPerfect crystal, we assign each particle to the structure cor-
talline region. Note thaam(i) is not rotationally invariant re_spondlng to the b|gge_{;tNote that our methqd is slightly
and hence the quantity on the left hand side of @y.de-  diferent from that used in Ref29] but, in practice, the two
pends on the choice of the coordinate axes. Indeed, for Qethods yield similar results. In Re[fzg], the plus.ters of
given bond, there can be ambiguity about whether the qua articles were analyzed by comparing the distributions of the
tity in Eq. (6) is greater than the threshold value of 0.5 or \°C@l order parameters for a given cluster and thermally
not. However, when summing over all the bonds connecte§Auiliorated perfect crystals.
to a given hard sphere, the criterion for crystallinity is sub-
stantially independent of the choice of the coordinate axes. IV. DYNAMICS OF CRYSTALLIZATION

In order to distinguish between different crystal structures OF MONODISPERSE AND POLYDISPERSE SYSTEMS

we COI’]StI’LlCt the second-order rotational invarianiéi), We begin with an analysis of the crystallization process as
de(i), andwe(i) [27], where monitored through the evolution of the Bragg peak in the
1o static structure factd®(q) [17], whereq is the wave number.
T A2 This method is widely used in analyzing data in the light
oI+ 1 m=2—l [Gim (D)) } (") scattering experiments.
After isolating the Bragg peak in the structure factor
and curve, we remove the liquid contribution by subtracting the
Percus-Yevick resu[t30] multiplied by a constant that varies
| | | ) from O (in the fully crystallized stateto 1 (in the liquid

>0.5, (6)

m=|

q(i)=

Wi(i)= E statg in order to ensure th&(q) — 0 at smallg. The crystal
my i .mg my my; ms fraction X can be found by integrating the Bragg peak and
my+my+mg=0 choosing the upper limit of the integration at the minimum of
A e e S(q) and by normalizing the result, so thét=1 in the fully
X im, (1) Aim, (1) Qim, (1), (8)  crystallized state. The other parameters that can be deter-
mined in this approach alé) the average linear crystal size,
where L=2K®x/Aq, whereK=1.155 is the Scherrer constant for a
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FIG. 2. The dependence of the static structure factor on the FIG. 3. The dependence of the static structure factor on the
v wave number for¢=58%. The curves shown correspond to the
wave number for¢p=55%. The two curves shown correspond to

the different stages of crystallizatidafter 4 and 80 steps where one three d'ﬁere”F stages of crystallization. The step numbers are indi-
step counts as 500collisions, whereN is the number of particles cated at the right hand corner.
The dashed-line curve represents the Percus-Yevick solgifien
liquid state, 4 stepsand the solid curve represents the fully crys- lowed them to get the values of the crystal nucleation rates
tallized systenm(80 steps within the framework of classical nucleation theory. Some-
what surprisingly, their results were several orders of magni-
tude smaller than the corresponding experimental results. In
contrast, our results are in a good agreement with the experi-
mental data. The nucleation rates for the polydisperse sys-
tems (especially for the lowest and the highest concentra-
tions studied confirm the well established fact that the
resence of polydispersity slows the crystallization down
ignificantly.
However, due to the small size of the systems studied in
the simulations, such parameters as the average linear size

crystal of a cubic shapgs1], (2) the number density of the
crystals,N.=X/L3, (3) and the nucleation density rate,
=dN./dt [17].

An example of the time variation of the static structure
factor for the monodisperse systéat ¢ =55%) is shown in
Fig. 2. One observes that the structure factor exhibits th
expected dynamics, namely, the Bragg peakR2 7 cor-
responding to th¢111} direction becomes higher and higher
and it shifts to lower wave numbers on crystallization. How-
ever, it is difficult to isolate the Bragg peak due to the emer-

gence of other peaks, for instance, of the one correspondin

to the fcc structure{Q00 peak. Note that the shape of the >3 of ,_.c»-;::_f'.r—'-hw

structure factor on the left hand side of the Bragg peak re- o ot e,‘,—""

mains substantially unchanged. Therefore, for the analysis o =

the structure, we used only the left half of the Bragg peak -4

and then multiplied the results by a factor of 2. For example, _, , .| omommer="

in Fig. 2, the lower integration limit was taken to be 6.5 and 2

the upper one at the maximum of the Bragg peak. At higher® 1} a—a—n—— e

packing fractions, we observed distinctive Bragg peaks at all— 05 , , : ,

stages of crystallizatioFig. 3). o _o--®-0v00e-0-06--0
By analyzing the time variations of the static structure £ -4f p_""'

factor we were able to calculate the crystal fractinthe o _s| c,o’

average linear crystal size and the number density of the 2 //\-

crystalsN, (Fig. 4). In spite of the minuscule systems stud- -6, 25 3 35 " 25

ied in the simulations, the time dependence is qualitatively Iog10‘c

similar to the experimental data. Figure 5 shows a summary

of our results both for the polydisperse caséth 5% of FIG. 4. The time evolution of the crystal fractidf(top pane),
polydispersity and monodisperse systems together with thepe average linear crystal size (in particle diameters, middle
experimental datfl7,32,33 and Monte Carlo simulations of pane), and the number density of the crystdig [in units of
Auer and Frenke[34]. The latter simulations used the um- (2R)~3, bottom pandlfor the monodisperse system @t=55%.
brella sampling method in order to determine the probabilityour results are shown as solid lines and the experimental results
of the formation of the critical size nuclei and the free-energy[17] as dashed lines. The time is measured in units of the diffusional
barrier for nucleation of a homogeneous crystal. This al-characteristic time.
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FIG. 6. The logarithm of the characteristic crystallization times
(measured by the crossover times—see)texiunits of the diffu-
sional characteristic times for the following cases: unbounded sys-
tem (monodisperse and polydisperse casesd the system with
walls and the system in the presence of gravityonodisperse

. . . Th i tal data f Réfl7 h .
and the number density of the crystals cannot be determlne%iase & experimental data from R¢1l7] are shown

directly. We have found that, based on the structure faCtOBounded in one dimension and without any gravitational

analysis, the average crystal size of the fully crystallized sys:

) ) forces.
tem is about 0.5-0.8 of the box size. On the other hand, the The snapshot of the hard-sphere configuration shown in

local-invariant based calculation of the number of crystallite ig. 7 indicates the complicated nature of crystallization

in our systems |nd|cat_es _that there is only one crystallite al hen periodic boundary conditions are used. Even at mod-
the end of the crystallization process.

Although we have found the crystal nucleation rates to beerately early stages of crystallization, there is an intercon-

in a good agreement with experimental results, the characteﬂ-e(:ted dp]t\ase of grOW|nghcry§taI T‘“C'.e : vylth_fpredtl)mmanltly
istic times for the crystallization do not quite agree. The first'CP 2nd fcc structures. The situation is significantly simpler
difference is the absence of an induction tipi&], defined

as the time before the initialization of the crystallization. In

all the systems studied here, the crystallization starts right
after the beginning of the simulation. The second difference
is in the values of the crossover times. The crossover time is
defined as a duration of crystallization that takes place at ar .
approximately uniform rate. Beyond the crossover time, the¢ j

FIG. 5. The logarithm of crystal nucleation ratgs units of
D, /(2R)%] for different packing fractions for the polydisperse and
monodisperse systenfsolid lineg. Experimental results as well as
the results from other simulations are shown for comparison.

corresponding experimental valu¢s7| (see Fig. 6 To
check whether this discrepancy is an artifact of the small size f ¢
of the system, we ran a few simulations with 20000 par-
ticles. The results were found to be approximately the same
indicating that the size dependence is somewhat weak. Still
we observed the expected differences between the polydis
perse and monodisperse systems: the crystallization pro
cesses were slower in the polydisperse systems.

V. THE EFFECTS OF THE BOUNDING WALLS
AND THE GRAVITY

In order to investigate the dynamics of a system in theé r|G. 7. The snapshot of a system with a volume fractionof
presence of the gravitational field, it is essential to first— 569, and periodic boundary conditions in the middle of the crys-
bound the system by some kind of walls. Otherwise wejlization process. Here, small dark, large light gray, and large dark
would deal with a free fall situation when all of the processesparticles correspond to liquid, hep, and fcc structures, respectively.

proceed in exactly the same way as in the absence of thene liquid particle sizes have been reduced to half their value for
gravity. Thus a good starting point is to consider the systeneasier visualization.
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0.65}

0.55}

0.45

0'350 0.2 0.4 0.6 0.8 1

z/L

FIG. 8. The density profile of a typical initial configuration of
the system bounded by two walls with=55%. L is the distance
between the two walls and is equal to 21.86 hard-sphere diameters

when walls are introduced. Even in the initial configuration  F|G. 10. The snapshot of a system<56%) bounded by two
(see Fig. 8 for a typical examplethere is pronounced lay- walls in the presence of gravitiacting downwards The color code
ering near the flat walls. These layers lead to a heterogeneoissas in Fig. 7.

wall-induced nucleation with the growth of the crystal occur-

ring towards the center of the chaniglg. 9. Furthermore, region consists of almost ideal hcp crystal planes that are

tohuet g:)yjrgzliléaevogls's gosr:err?ﬁ)rgdlzﬁgmespared to the case Wlth'parallel to the bounding plane, whereas in the absence of

S L S . ravity, the crystallites are stacked at random orientations.
When the gravitational field in the direction perpendlcularg v, y

to the bounding walls is turned on, the process of crystalli- Figure 12 shows the variation of the concentration with
: X 9 . ' P y the height, counting from the bottom plane. The concentra-
zation switches to a different modsee the snapshots shown

1 I ~ 0, ~ 0, -
in Figs. 10 and 11 The particles are seen to first settle down.tlon at the bottom varies frop~58% 1o $~63% exceed

) o A
at the bottom of the channel, and after a while we observe ing the average concentration by3—-5%. The concentration

stationary phase separation with the crystal at the bottom an%loes not change significantly for up to half of the channel
the liquid at the top of the channel. Note that the crystalline
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FIG. 11. The snapshot of the system shown in Fig. 10 rotated so

FIG. 9. The snapshot of a system bounded by two walls in thehat the crystal planes are perpendicular to the image. The image

middle of the crystallization process. The convention for the colorssizes of the particles are greatly reduced. Note the excellent planar
is as in Fig. 7 and agaigp=56%. ordering.
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FIG. 12. The concentration profile, as measured¢hyfor the FIG. 13. Plot of the fractiong of fcc, hcp, and bec structures in
system in the presence of the gravitational field. Hérés the  the system withp=56% versuss defined as the number of colli-
distance between the two walls and is equal #N(6¢oa)™®  sions(in units of 2000, whereN is the number of particles
hard-sphere diameters, whe¥e=10 976 is the number of particles
and ¢4 is the total concentration of the systerfshown in the
legend. The accelerations due to gravity ag,~4.55, gss
%457, 955%4.60, 957%4.63, an®58%4.66.
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VI. THE CRYSTAL STRUCTURE

Finally, we have analyzed the nature of the crystal struc-
and then it comes down té~43%—52% at the top where ture for all the cases studied here. The example of the struc-

the system becomes a liquid. We also notice that the densityr® for one of the simulations¢(=56%, monodisperse, no
profiles depend on the initial concentrations only weakly,Valls, zero gravityis shown in Fig. 13 as a function of time.
although the higher the initial concentration of the system,The figure shows the percentage of the different crystal types
the lower the propensity for the group of particles to remain@mong the particles in the crystallized regions. The hcp
liquidlike. Interestingly, for the system a=58% the long structure d(_)mlr_wates in the initial stages of crystallization. As
time crystallization fraction is about 98%), although one canfhe crystallization proceeds, the fcc structure emerges and
see from Fig. 12 that about 20% of the volume of the systen$tarts growing. In some cases, the fcc structure reaches a
have concentrations smaller than the melting vafies 9%.  value equal to 60% of the crystallized volume. The teed

This can be explained as the emergence of “induced” crysOther packingstypically accounted for no larger than 5%-—

tallization, i.e., crystallization promoted by the well-formed 10% of the number of crystal-like hard spheres. Once the
substratd 35]. crystallization is completed, we do not observe any changes

While at concentrations up 6~58% the crystallization in the local structure. Our observations allow us to conclude

times for the bounded systems with and without the gravit)lhat the fcc structure is more stable than the hcp especially
are approximately the same, at higher concentrations we Ol_p_ecause the frgctlpn of the fcc crystals never decreases dur-
serve that the presence of gravity slows the crystallizationd the crystallization proce4d8,36,37.

down significantly. Thus, gravity stabilizes the glassy state

by reducing the mobility of the particles even though the

presence of the walls helps the crystallization. We observe ACKNOWLEDGMENTS
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