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Molecular dynamics simulations of crystallization of hard spheres
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We have carried out molecular dynamics simulations of the crystallization of hard spheres modeling colloi-
dal systems that are studied in conventional and space-based experiments. We use microscopic probes to
investigate the effects of gravitational forces, polydispersity, and of bounding walls on the phase structure. The
simulations employed an extensive exclusive particle grid method and the type and degree of crystalline order
was studied in two independent ways: by the structure factor, as in experiments, and through local rotational
invariants. We present quantitative comparisons of the nucleation rates of monodisperse and polydisperse
hard-sphere systems and benchmark them against experimental results. We show how the presence of bounding
walls leads to wall-induced nucleation and rapid crystallization, and discuss the role of gravity on the dynamics
of crystallization.
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I. INTRODUCTION

Hard-sphere systems are idealized approximations
large number of physical systems, such as simple liquids@1#,
glasses@2#, colloidal dispersions@3#, and particulate compos
ites @4# and are now being studied extensively in a mic
gravity environment@5–7# that allows for the creation o
new technological materials, such as photonic crystals@8#.
The use of colloidal particles for engineering new materi
is a relatively unexplored field that promises to revolution
materials synthesis. Colloidal suspensions are also inte
ing from a fundamental scientific point of view since th
self-assemble into a wide range of structures. Thus, they
be thought of as models of atomistic condensed matter
tems with the distinct advantage of relevant length and t
scales being more readily accessible to experiments.

On the Earth, the effects of sedimentation and grav
induced convection can cloud, modify, or sometimes e
radically alter the intrinsic behavior of certain classes of c
loidal systems. Because the binding energies of the crys
line phases are low and comparable to each other, gravity
greatly influence the kinetics of formation and, indeed,
very nature of the observed crystal structure. Colloidal s
pensions of hard spheres are model systems for studying
statistical mechanics of structural phase transitions. S
suspensions undergo an entropy-driven phase transition
fluid to crystal as a function of increasing volume fractio
Unlike comparable phase transitions in conventional syst
of condensed matter, the dynamics of such structural ph
transitions can be monitored with ‘‘atomic’’ precision usin
conventional light microscopy. In hard-sphere systems
high volume fractions, glass formation competes with
nucleation and growth of the crystalline phase. The Chaik
Russel experiments on a space shuttle@5,6# have led to the
striking result that samples of hard sphere colloids that
main glassy on the Earth for more than a year crystal
within a few weeks in a microgravity environment.

In this paper, we present results of molecular dynam
~MD! simulations of the crystallization of hard sphere
1063-651X/2002/66~6!/061401~9!/$20.00 66 0614
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These simulations allow for microscopic probes of the ph
ics involved in both conventional and space-based meas
ments of nucleation and crystal growth in colloidal system
We focus on the effects of weak gravitational forces, po
dispersity, and on the effects of bounding walls on pha
structure. We present quantitative comparisons of the nu
ation rates of monodisperse and polydisperse hard-sp
systems and benchmark them against experimental res
We demonstrate that the presence of gravity can delay c
tallization. Furthermore, we show how the presence of
bounding walls leads to wall-induced nucleation and ra
crystallization.

Numerical studies of the hard-sphere system started w

FIG. 1. Schematic representation of the phase diagram of a
tem of hard spheres.
©2002 The American Physical Society01-1
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the pioneering work of Alder and Wainwright@9#. Since then,
there have been many studies that elucidated the natu
the phase diagram. In particular, computer simulations~see
Refs. @10–13# for a few examples! have provided evidence
for the existence of a first-order fluid-to-solid transition
the hard sphere system. With an increase of the packing f
tion f, ~defined as the ratio of the volume occupied by t
spheres to the total volume! the system in the liquid stat
reaches the freezing point atf549.4% ~see Fig. 1 for a
sketch!. The phase diagram splits into metastable and sta
branches at this point. The metastable branch is a conti
tion of the liquid branch and it exists in the region betwe
the freezing point andf'64% which corresponds to th
random close packing~rcp! state. The rcp provides the max
mum f that can be achieved in the disordered system.
stable branch consists of a coexistence region of the liq
and crystal which ends atf of 54.5% corresponding to th
melting point. Above the melting point, the stable bran
represents the crystal state and that is present up tf
'74% which corresponds either to the close packed fa
centered cubic~fcc! or to the hexagonal closed packed~hcp!
configurations.

The metastable branch, especially its part above the m
ing point, has received a lot of attention in the last seve
years. One of the debated issues here is the existence o
glassy state in the metastable system whenf.58%, i.e. in
the vicinity of the rcp value. A number of papers report
sign of crystallization@13–15# and thus confirm the presenc
of the glassy state. On the other hand, Rintoul and Torqu
@10# have argued that if computer simulations were to run
a sufficiently long time, then crystallization would eventua
set in. A striking experimental evidence for this scenario h
been provided by a recent microgravity experiment on
space shuttle@5#. It demonstrated crystallization in a hard
sphere colloidal dispersion atf561.9% occurring on the
time scale of several days whereas the same system s
amorphous for more than a year when studied on the Ea

The formation of the crystals in a supersaturated ha
sphere system is commonly described by the classical nu
ation theory~see Ref.@16#, and references therein!. Accord-
ing to this theory, a crystallite forms in the system due
thermal fluctuations and then its total free energy consist
two terms: a negative bulk term, which is proportional to t
volume of the crystallite, and a positive surface term tha
proportional to its surface area. This leads to the predic
that the crystallite will continue to grow only when its size
bigger than a certain critical value and it will shrink othe
wise. There are a number of experimental results that sup
the classical nucleation theory@16,17#.

The MD simulations of the hard-spheres systems that
report on in this paper are focused on the dynamics of c
tallization above the melting concentration and are comp
mentary to the earth-based studies of Gasseret al. @18#. The
crystallization process is monitored by means of local or
parameters as well as through the static structure factor.
former method is currently widely used to analyze the res
of computer simulations whereas the structure factor is m
sured experimentally. We investigate the influence of bou
ing walls, polydispersity, and of gravitational field on th
06140
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dynamics of crystallization and show that the nucleat
rates for crystallization are comparable to the values obtai
experimentally.

We show that the system with periodic boundary con
tions crystallizes in a somewhat complex manner with
interconnected phase of growing crystal nuclei. In contras
system with planar walls exhibits layering and leads to
heterogeneous wall nucleation mechanism characterized
more rapid crystallization. For volume fraction around 56%
gravity leads to a concentration gradient accompanied by
formation of very well-defined layers with excellent plan
ordering. However, at larger volume fractions, gravity cau
the crystallization process to slow down relative to the pla
wall case without any imposed gravitational field. Polyd
persity in the size distribution of the hard spheres leads
slower crystallization, and in the absence of gravity,
found an increase with time of the relative fraction of ha
spheres with fcc order, compared to hcp, suggesting that
former crystal structure is preferred to the latter.

The outline of the paper is as follows. In Sec. II, w
describe the algorithms used in the simulations. In Sec.
we present the methods of the analysis of the local struc
and of the thermodynamical properties of the system. Sec
IV presents the results of our simulations for both monod
perse and polydisperse systems with periodic boundary c
ditions. Section V considers the effects arising due to ri
flat walls that restrict motion in one direction and discuss
the role of a uniform gravitational field along this directio
Finally, in Sec. VI, we discuss the nature of the crystalli
phase.

II. THE MD SIMULATION

There are many possible algorithms that can be use
the MD simulations of hard-sphere systems@19#. Owing to
the simplicity of the potential, the only events that need to
calculated are the consecutive collisions between the
ticles. In this respect, the MD algorithms for the hard-sph
systems are quite distinct from the algorithms for the s
types of potentials where the evolution between the co
sions also matters. Thus the evolution should not be con
ered in equal time steps but, instead, it ought to be stud
through an event driven algorithm. The most challeng
part of such an algorithm, in terms of its computational p
formance, is the proper scheduling of the future collisio
and the organization of the data structure.

Our MD simulations were performed by implementin
the algorithms proposed by Isobe@20# who introduced the
concept of an extended exclusive particle grid method to
studies of hard-sphere and hard disk systems. In this met
the volumeV containing the particles is divided into sma
cells, so that each cell contains no more than one part
Thus, the continuous coordinates of the particles
‘‘mapped’’ onto a lattice which allows for an easy specific
tion of neighboring particles. Candidates for the ne
particle-pair collision are found just by searching the neig
boring cells. Once this is accomplished, the next collis
event for the system can be found by creating a comp
binary tree@21#. The positions of all the particles do not nee
1-2
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to be updated after each collision, since in a sufficien
dense system the neighborhood of a particle remains
same for a long time.

The initial packing of the system ofN hard spheres wa
generated from a random set of points within a box by us
an iterative algorithm proposed by Jullienet al. @22#. At each
stage of this algorithm one identifies the pair of partic
with the smallest mutual distancedm

i ~the superscripti refers
to the i th stage of the iterative procedure! and moves them
apart symmetrically by a distancedM

i that decreases with
each iterative step according to the following formula:

dM
i 115dM

i 2
R̂

N
~fM

i 2fm
i !1/3. ~1!

Here fM ,m
i 5pdM ,m

3 N/(6V), fM
0 51, andR̂ is a parameter

of the algorithm. The process continues untildM,dm and
the final value ofdm is chosen to be the particle diamete
Different values ofR̂ lead to different packing fractions and
generally, the smaller theR̂, the larger the packing fraction
In the limit of R̂→0, one reaches a packing fraction corr
sponding to the random close packed value. In order to
tain a polydisperse distribution of the radii we modified th
algorithm so that at each iteration step we move apart
particles that overlap the most and their new mutual dista
is set equal to the sum of the predefined particles’ radii.

Our MD simulations were performed with at least 10 9
hard spheres~both in the monodisperse and polydisper
cases!. The particles were placed in a cubic box. In the a
sence of any walls, periodic boundary conditions were
posed. When studying the effects of the walls, two flat wa
were introduced atz50 andz5L while maintaining the pe-
riodic boundary conditions in the other two directions. Th
was accomplished by changing the standard algorithm@22#
so that the walls are represented by two new ‘‘particles’’ t
do not move. The initial particle velocities were chosen to
random with a Gaussian distribution and zero total mom
tum.

The results were averaged over six simulations for e
set of control parameters. We have focused on the con
tration range fromf554% tof558% for systems withou
the bounding walls and gravity and fromf554% to f
563% in the other cases. This procedure was motivated
the fact that for lower and higher concentrations the crys
lization times increase substantially and so does the com
tational time.

In our simulations we define the hard-sphere diamete
be 1 unit and the time scale is defined by choosing the
mean absolute velocity of the hard spheres to be 1. Foll
ing the approach of Harland and van Megen@17#, in order to
make contact with experiment, we show the results of
simulations by expressing times and lengths in units of
diffusional characteristic timetb5R2/D0 and hard-sphere
diameter 2R, respectively. Here,D053p/16A2v̄ l m f p ,
where v̄ is the mean absolute velocity of the hard sphe
and the mean free pathl m f p5V/N4pR2. The acceleration
due to the gravity was chosen to be approximately 4.7~see
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caption in Fig. 12 for precise values! in units in which the
hard-sphere diameter is 1 and the mean absolute velo
is 1.

III. CHARACTERIZATION OF THE HARD-SPHERE
SYSTEMS

A. The equation of state

The relevant parameter that describes the thermodyna
properties of the hard-sphere system is the pressureP, since
the internal energy of such a system is that of an ideal g
Changing the temperatureT is simply equivalent to rescaling
the time scale. The pressure can be calculated by using
radial distribution function or through the collision rate in th
system. The latter method is more reliable because of
difficulties with a precise determination of the radial dist
bution function.

The equation of state in terms of the collision rateG is
given by @23#

PV

NkBT
511

G

G0

B2

V
, ~2!

whereV is the total volume,N is the number of particles,kB
is the Boltzmann’s constant, andB2 is the second virial co-
efficient.G0 is the low-density collision rate, which is give
by @24#

G058
N~N21!

V
R2Ap^v2&

3
, ~3!

where^v2& is the mean square velocity andR is the radius of
the sphere.

The pressure was monitored throughout the simulat
and was used as a quantitative parameter that allowed u
check on the progress of the crystallization.

B. The local structure

A number of methods have been used in the literature
characterize the local structure and a degree to which
crystalline. A widely used technique to distinguish betwe
crystalline and amorphous structures is through the Voro
analysis of the topology of the neighborhood of a given p
ticle. The Voronoi polyhedron is defined@2# as the set of all
points that are closer to a given particle than to any oth
Partitioning of space into the Voronoi polyhedra allows o
to make a natural identification of the neighbors. Determi
tion of the numbers of walls in the Voronoi polyhedra lea
to an unambiguous selection of the particles in the solidl
regions. However, such an analysis lacks precision when
plied to thermally distorted crystals and is not too effective
distinguishing between various types of crystalline ord
The same difficulties arise when the structure, crystalline
not, is analyzed through the particle distribution function.

The local invariants

In order to determine the kind of the local order around
particle and to distinguish between the fcc, hcp, bcc, a
1-3
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liquidlike configurations, we make use of the local order p
rameter method@25,26#, which gives reliable results even i
the case of crystalline structures which are highly perturb
The first step here is to construct the normalized order
rameterq̂lm for a particlei through

q̂lm~ i !5
1

Nb~ i ! (
j 51

Nb( i )

Ylm~rW i j !, ~4!

whereNb( i ) is the number of neighbors of the particle,Ylm

is a spherical harmonic andrW i j 5rW j2rW i with rW i being the
coordinates of the center of particlei. The neighbors are
defined to be those particles that have a mutual distance
than a certain cutoff value. It is physically appealing
choose the cutoff as corresponding to the position of the
minimum in the radial distribution function.Ylm is the
spherical harmonic function which means thatq̂lm( i ) has
2l 11 complex components.q̂lm( i ) can be normalized by
multiplication of a suitable constant to yieldq̄lm( i ), such that

(
m52 l

m5 l

q̄lm~ i !q̄lm* ~ i !51. ~5!

If

U (
m52 l

m5 l

q̄lm~ i !q̄lm* ~ j !U.0.5, ~6!

then the bond between particlesi and j is considered to be
crystal-like. Furthermore, if a particle has seven or m
crystal-like bonds, then it is counted as belonging to a cr
talline region. Note thatq̄lm( i ) is not rotationally invariant
and hence the quantity on the left hand side of Eq.~6! de-
pends on the choice of the coordinate axes. Indeed, f
given bond, there can be ambiguity about whether the qu
tity in Eq. ~6! is greater than the threshold value of 0.5
not. However, when summing over all the bonds connec
to a given hard sphere, the criterion for crystallinity is su
stantially independent of the choice of the coordinate ax

In order to distinguish between different crystal structu
we construct the second-order rotational invariantsq4( i ),
q6( i ), andŵ6( i ) @27#, where

ql~ i !5F 4p

2l 11 (
m52 l

m5 l

uq̂lm~ i !u2G1/2

~7!

and

ŵl~ i !5 (
m1 ,m2 ,m3

m11m21m350

S l l l

m1 m2 m3D
3q̂lm1

~ i !q̂lm2
~ i !q̂lm3

~ i !, ~8!

where
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m1 m2 m3D
is a Wigner 3j symbol @28#. After calculatingq4( i ), q6( i ),
andŵ6( i ), one can decompose a vectorsW consisting of these
three components into the five characteristic vectorssW f cc ,
sWhcp , sWbcc , sWsc , andsW ico corresponding to perfect fcc, hcp
bcc, sc, and icosahedral structures. The values for the pe
crystals are given in Table I. Such a decomposition can
carried out by minimizing the following expression@29#:

D25@sW2~ f f ccsW f cc1 f hcpsWhcp1 f bccsWbcc1 f scsWsc1 f icosW ico!#2

~9!

with a constraint that all thef factors are positive and the
add up to 1. As a result we get a set of five numbers,f. Each
f represents the ‘‘importance’’ of the corresponding structu
For example, for each particle of the perfect fcc crystal
would get f f cc51 and all the others to be zero. For an im
perfect crystal, we assign each particle to the structure
responding to the biggestf. Note that our method is slightly
different from that used in Ref.@29# but, in practice, the two
methods yield similar results. In Ref.@29#, the clusters of
particles were analyzed by comparing the distributions of
local order parameters for a given cluster and therma
equilibrated perfect crystals.

IV. DYNAMICS OF CRYSTALLIZATION
OF MONODISPERSE AND POLYDISPERSE SYSTEMS

We begin with an analysis of the crystallization process
monitored through the evolution of the Bragg peak in t
static structure factorS(q) @17#, whereq is the wave number.
This method is widely used in analyzing data in the lig
scattering experiments.

After isolating the Bragg peak in the structure fact
curve, we remove the liquid contribution by subtracting t
Percus-Yevick result@30# multiplied by a constant that varie
from 0 ~in the fully crystallized state! to 1 ~in the liquid
state! in order to ensure thatS(q)→0 at smallq. The crystal
fraction X can be found by integrating the Bragg peak a
choosing the upper limit of the integration at the minimum
S(q) and by normalizing the result, so thatX51 in the fully
crystallized state. The other parameters that can be d
mined in this approach are~1! the average linear crystal size
L52Kp/Dq, whereK51.155 is the Scherrer constant for

TABLE I. The values ofq4( i ), q6( i ), and ŵ6( i ) for different
perfect crystal structures@27#.

q4 q6 ŵ6

fcc 0.191 0.575 -0.013
hcp 0.097 0.485 -0.012
bcc 0.036 0.511 0.013
sc 0.764 0.354 0.013
Icosahedral 0 0.663 -0.170
1-4
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MOLECULAR DYNAMICS SIMULATIONS OF . . . PHYSICAL REVIEW E 66, 061401 ~2002!
crystal of a cubic shape@31#, ~2! the number density of the
crystals,Nc5X/L3, ~3! and the nucleation density rate,I
5dNc /dt @17#.

An example of the time variation of the static structu
factor for the monodisperse system~at f555%) is shown in
Fig. 2. One observes that the structure factor exhibits
expected dynamics, namely, the Bragg peak at 2qR'7 cor-
responding to the$111% direction becomes higher and high
and it shifts to lower wave numbers on crystallization. Ho
ever, it is difficult to isolate the Bragg peak due to the em
gence of other peaks, for instance, of the one correspon
to the fcc structure ($200% peak!. Note that the shape of th
structure factor on the left hand side of the Bragg peak
mains substantially unchanged. Therefore, for the analys
the structure, we used only the left half of the Bragg pe
and then multiplied the results by a factor of 2. For examp
in Fig. 2, the lower integration limit was taken to be 6.5 a
the upper one at the maximum of the Bragg peak. At hig
packing fractions, we observed distinctive Bragg peaks a
stages of crystallization~Fig. 3!.

By analyzing the time variations of the static structu
factor we were able to calculate the crystal fractionX, the
average linear crystal sizeL, and the number density of th
crystalsNc ~Fig. 4!. In spite of the minuscule systems stu
ied in the simulations, the time dependence is qualitativ
similar to the experimental data. Figure 5 shows a summ
of our results both for the polydisperse case~with 5% of
polydispersity! and monodisperse systems together with
experimental data@17,32,33# and Monte Carlo simulations o
Auer and Frenkel@34#. The latter simulations used the um
brella sampling method in order to determine the probabi
of the formation of the critical size nuclei and the free-ene
barrier for nucleation of a homogeneous crystal. This

FIG. 2. The dependence of the static structure factor on
wave number forf555%. The two curves shown correspond
the different stages of crystallization~after 4 and 80 steps where on
step counts as 500N collisions, whereN is the number of particles!.
The dashed-line curve represents the Percus-Yevick solution~the
liquid state, 4 steps! and the solid curve represents the fully cry
tallized system~80 steps!.
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lowed them to get the values of the crystal nucleation ra
within the framework of classical nucleation theory. Som
what surprisingly, their results were several orders of mag
tude smaller than the corresponding experimental results
contrast, our results are in a good agreement with the exp
mental data. The nucleation rates for the polydisperse
tems ~especially for the lowest and the highest concent
tions studied! confirm the well established fact that th
presence of polydispersity slows the crystallization do
significantly.

However, due to the small size of the systems studied
the simulations, such parameters as the average linear

e
FIG. 3. The dependence of the static structure factor on

wave number forf558%. The curves shown correspond to t
three different stages of crystallization. The step numbers are i
cated at the right hand corner.

FIG. 4. The time evolution of the crystal fractionX ~top panel!,
the average linear crystal sizeL ~in particle diameters, middle
panel!, and the number density of the crystalsNc @in units of
(2R)23, bottom panel# for the monodisperse system atf555%.
Our results are shown as solid lines and the experimental re
@17# as dashed lines. The time is measured in units of the diffusio
characteristic time.
1-5
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VOLKOV et al. PHYSICAL REVIEW E 66, 061401 ~2002!
and the number density of the crystals cannot be determ
directly. We have found that, based on the structure fa
analysis, the average crystal size of the fully crystallized s
tem is about 0.5–0.8 of the box size. On the other hand,
local-invariant based calculation of the number of crystalli
in our systems indicates that there is only one crystallite
the end of the crystallization process.

Although we have found the crystal nucleation rates to
in a good agreement with experimental results, the chara
istic times for the crystallization do not quite agree. The fi
difference is the absence of an induction time@17#, defined
as the time before the initialization of the crystallization.
all the systems studied here, the crystallization starts r
after the beginning of the simulation. The second differen
is in the values of the crossover times. The crossover tim
defined as a duration of crystallization that takes place a
approximately uniform rate. Beyond the crossover time,
crystallization rate slows down and is no longer consta
Our crossover times are more than ten times smaller than
corresponding experimental values@17# ~see Fig. 6!. To
check whether this discrepancy is an artifact of the small s
of the system, we ran a few simulations with 20 000 p
ticles. The results were found to be approximately the sa
indicating that the size dependence is somewhat weak. S
we observed the expected differences between the poly
perse and monodisperse systems: the crystallization
cesses were slower in the polydisperse systems.

V. THE EFFECTS OF THE BOUNDING WALLS
AND THE GRAVITY

In order to investigate the dynamics of a system in
presence of the gravitational field, it is essential to fi
bound the system by some kind of walls. Otherwise
would deal with a free fall situation when all of the process
proceed in exactly the same way as in the absence of
gravity. Thus a good starting point is to consider the syst

FIG. 5. The logarithm of crystal nucleation rates@in units of
D0 /(2R)5] for different packing fractions for the polydisperse an
monodisperse systems~solid lines!. Experimental results as well a
the results from other simulations are shown for comparison.
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bounded in one dimension and without any gravitatio
forces.

The snapshot of the hard-sphere configuration shown
Fig. 7 indicates the complicated nature of crystallizati
when periodic boundary conditions are used. Even at m
erately early stages of crystallization, there is an interc
nected phase of growing crystal nuclei with predominan
hcp and fcc structures. The situation is significantly simp

FIG. 6. The logarithm of the characteristic crystallization tim
~measured by the crossover times—see text! in units of the diffu-
sional characteristic times for the following cases: unbounded
tem ~monodisperse and polydisperse cases!, and the system with
walls and the system in the presence of gravity~monodisperse
case!. The experimental data from Ref.@17# are shown.

FIG. 7. The snapshot of a system with a volume fraction off
556% and periodic boundary conditions in the middle of the cr
tallization process. Here, small dark, large light gray, and large d
particles correspond to liquid, hcp, and fcc structures, respectiv
The liquid particle sizes have been reduced to half their value
easier visualization.
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when walls are introduced. Even in the initial configurati
~see Fig. 8 for a typical example!, there is pronounced lay
ering near the flat walls. These layers lead to a heterogen
wall-induced nucleation with the growth of the crystal occu
ring towards the center of the channel~Fig. 9!. Furthermore,
the crystallization is more rapid compared to the case w
out bounding walls, as seen in Fig. 6.

When the gravitational field in the direction perpendicu
to the bounding walls is turned on, the process of crysta
zation switches to a different mode~see the snapshots show
in Figs. 10 and 11!. The particles are seen to first settle dow
at the bottom of the channel, and after a while we observ
stationary phase separation with the crystal at the bottom
the liquid at the top of the channel. Note that the crystall

FIG. 8. The density profile of a typical initial configuration o
the system bounded by two walls withf555%. L is the distance
between the two walls and is equal to 21.86 hard-sphere diame

FIG. 9. The snapshot of a system bounded by two walls in
middle of the crystallization process. The convention for the col
is as in Fig. 7 and againf556%.
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region consists of almost ideal hcp crystal planes that
parallel to the bounding plane, whereas in the absence
gravity, the crystallites are stacked at random orientation

Figure 12 shows the variation of the concentration w
the height, counting from the bottom plane. The concen
tion at the bottom varies fromf'58% tof'63% exceed-
ing the average concentration by'3 –5%. The concentration
does not change significantly for up to half of the chan

rs.

e
s

FIG. 10. The snapshot of a system (f556%) bounded by two
walls in the presence of gravity~acting downwards!. The color code
is as in Fig. 7.

FIG. 11. The snapshot of the system shown in Fig. 10 rotated
that the crystal planes are perpendicular to the image. The im
sizes of the particles are greatly reduced. Note the excellent pl
ordering.
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and then it comes down tof'43%252% at the top where
the system becomes a liquid. We also notice that the den
profiles depend on the initial concentrations only weak
although the higher the initial concentration of the syste
the lower the propensity for the group of particles to rem
liquidlike. Interestingly, for the system atf558% the long
time crystallization fraction is about 98%, although one c
see from Fig. 12 that about 20% of the volume of the syst
have concentrations smaller than the melting value~54.5 %!.
This can be explained as the emergence of ‘‘induced’’ cr
tallization, i.e., crystallization promoted by the well-forme
substrate@35#.

While at concentrations up tof'58% the crystallization
times for the bounded systems with and without the grav
are approximately the same, at higher concentrations we
serve that the presence of gravity slows the crystalliza
down significantly. Thus, gravity stabilizes the glassy st
by reducing the mobility of the particles even though t
presence of the walls helps the crystallization. We obse
crystallization in the monodisperse systems at packing f
tions as high as 63%, which would lead to the glassy beh
ior in the absence of the walls.

FIG. 12. The concentration profile, as measured byf, for the
system in the presence of the gravitational field. Here,L is the
distance between the two walls and is equal to (pN/6f total)

1/3

hard-sphere diameters, whereN510 976 is the number of particle
and f total is the total concentration of the systems~shown in the
legend!. The accelerations due to gravity areg54'4.55, g55

'4.57, g56'4.60, g57'4.63, andg58'4.66.
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VI. THE CRYSTAL STRUCTURE

Finally, we have analyzed the nature of the crystal str
ture for all the cases studied here. The example of the st
ture for one of the simulations (f556%, monodisperse, no
walls, zero gravity! is shown in Fig. 13 as a function of time
The figure shows the percentage of the different crystal ty
among the particles in the crystallized regions. The h
structure dominates in the initial stages of crystallization.
the crystallization proceeds, the fcc structure emerges
starts growing. In some cases, the fcc structure reach
value equal to 60% of the crystallized volume. The bcc~and
other packings! typically accounted for no larger than 5%
10% of the number of crystal-like hard spheres. Once
crystallization is completed, we do not observe any chan
in the local structure. Our observations allow us to conclu
that the fcc structure is more stable than the hcp espec
because the fraction of the fcc crystals never decreases
ing the crystallization process@18,36,37#.
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FIG. 13. Plot of the fractionsm of fcc, hcp, and bcc structures i
the system withf556% versuss defined as the number of colli
sions~in units of 1000N, whereN is the number of particles!.
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